Inequalities for eigenvalues of compactly perturbed unitary operators
نویسندگان
چکیده
منابع مشابه
On Eigenvalues in Gaps for Perturbed Magnetic Schrr Odinger Operators
1 Introduction (1) We consider Schrr odinger operators with a spectral gap, perturbed by either a decreasing electric potential or a decreasing magnetic eld. The strength of these perturbations depends on a coupling parameter. With growing, eigenvalues may move into the gap or out of the gap. Most of our results concern (lower) bounds for the number of eigenvalues that cross a xed energy level ...
متن کاملPayne-polya-weinberger Type Inequalities for Eigenvalues of Nonelliptic Operators
Let denote the Laplacian in the Euclidean space. The classic upper estimates, independent of the domain, for the gaps of eigenvalues of − , (− )2 and (− )k(k ≥ 3) were studied extensively by many mathematicians, cf. Payne, Polya and Weinberger [16], Hile and Yeh [10], Chen and Qian [2], Guo [8] etc.. The asymptotic behaviors of eigenvalues for degenerate elliptic operators were considered by Be...
متن کاملOn Approximation of the Eigenvalues of Perturbed Periodic Schrödinger Operators
This paper addresses the problem of computing the eigenvalues lying in the gaps of the essential spectrum of a periodic Schrödinger operator perturbed by a fast decreasing potential. We use a recently developed technique, the so called quadratic projection method, in order to achieve convergence free from spectral pollution. We describe the theoretical foundations of the method in detail, and i...
متن کاملInequalities for the eigenvalues of non-selfadjoint Jacobi operators
We prove Lieb-Thirring-type bounds on eigenvalues of non-selfadjoint Jacobi operators, which are nearly as strong as those proven previously for the case of selfadjoint operators by Hundertmark and Simon. We use a method based on determinants of operators and on complex function theory, extending and sharpening earlier work of Borichev, Golinskii and Kupin.
متن کاملOn Absence of Embedded Eigenvalues for Schrõdinger Operators with Perturbed Periodic Potentials
The problem of absence of eigenvalues imbedded into the continuous spectrum is considered for a Schrödinger operator with a periodic potential perturbed by a sufficiently fast decaying “impurity” potential. Results of this type have previously been known for the one-dimensional case only. Absence of embedded eigenvalues is shown in dimensions two and three if the corresponding Fermi surface is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2017
ISSN: 1846-3886
DOI: 10.7153/oam-11-32